LP-8101: Lux FHE Patent Strategy
| Field | Value |
|---|---|
| LP # | 8101 |
| Title | Fully Homomorphic Encryption Patent Strategy |
| Author(s) | Lux Industries Inc |
| Status | Draft |
| Created | 2025-12-27 |
| Category | Intellectual Property |
Abstract
This LP documents the comprehensive patent strategy for Lux's Fully Homomorphic Encryption (FHE) stack, identifying patentable innovations unique to blockchain-integrated FHE, analyzing the existing patent landscape, and recommending a prosecution strategy.
Motivation
Lux has developed a novel FHE stack comprising three libraries:
- luxfi/fhe: OpenFHE C++ fork with blockchain-specific optimizations (BSD-3-Clause)
- luxfi/tfhe: Pure Go TFHE implementation (BSD-3-Clause)
- luxfi/lattice: Go lattice cryptography primitives with multiparty protocols (Apache-2.0)
These libraries contain multiple innovations unique to blockchain-integrated FHE that warrant patent protection to:
- Protect Lux's competitive advantage
- Create licensing opportunities
- Establish defensive patent portfolio
- Prevent competitors from patenting blockchain-FHE combinations
Part I: Patent Landscape Analysis
Known Patents to Avoid
| Patent | Holder | Description | Filing Date | Our Mitigation |
|---|---|---|---|---|
| EP4195578 | Zama | Seed + Fourier ciphertext storage for PBS | 2021-12 | Use standard RLWE representation |
| EP4488821 | Zama | Shift-left PBS shift-right error reduction | 2022-03 | Use classical bootstrapping refresh |
| WO2023067928 | - | Integer-wise TFHE arithmetic circuits | 2022-10 | Novel limb composition approach |
| WO2023074133 | - | TFHE integer operations | 2022-11 | Alternative carry propagation |
| Intel FHE Accel | Intel | Hardware FHE acceleration | Various | Software-only implementations |
Safe Prior Art We Build On
All our implementations build on these pre-2020 academic foundations:
- Chillotti et al. ASIACRYPT 2017: Original TFHE programmable bootstrapping
- Ducas-Micciancio 2015: FHEW binary gate bootstrapping
- Mouchet et al. 2020: Multiparty RLWE-based MHE (ePrint 2020/304)
- Mouchet et al. 2022: Efficient t-out-of-N threshold RLWE (ePrint 2022/780)
- Generic LWE/RLWE: Standard lattice cryptography (Regev 2005, RLWE 2010)
Freedom to Operate Analysis
| Component | Risk Level | Notes |
|---|---|---|
| Core TFHE/FHEW | β Low | Academic prior art, no patents |
| Blind Rotation | β Low | Chillotti 2017 paper |
| Threshold FHE | β Low | Mouchet papers, no patents |
| Radix Integers | β οΈ Medium | Avoid Zama's specific techniques |
| GPU Acceleration | β οΈ Medium | Verify against Intel/AMD patents |
| fhEVM Integration | β Low | Novel to Lux |
Part II: Patentable Innovations
Category A: Consensus-FHE Integration (High Priority)
A1. Consensus-Integrated Threshold FHE
Problem: Existing threshold FHE requires separate communication rounds for distributed decryption, adding latency to blockchain finality.
Innovation: Integrate threshold FHE decryption into Lux Snow++ consensus protocol:
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Lux Consensus Round β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β 1. Transaction includes FHE ciphertext requiring decrypt β
β 2. During consensus sampling, validators: β
β a. Vote on block validity β
β b. Include partial decryption share in vote β
β 3. Block proposer aggregates: β
β a. Consensus votes β finality β
β b. Decryption shares β plaintext β
β 4. Single-round threshold decrypt + finality β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Independent Claims:
- Method for combining threshold FHE partial decryption with blockchain consensus voting in a single protocol round
- System for achieving both block finality and ciphertext decryption through stake-weighted validator sampling
- Apparatus for piggy-backing cryptographic secret shares on consensus messages
Files: fhe/threshold/ (planned), lattice/multiparty/threshold.go
A2. Deterministic FHE Random Number Generation
Problem: FHE operations require random sampling (noise, blinding), but blockchain requires deterministic execution across all nodes.
Innovation: SHA256-based deterministic PRNG seeded from blockchain state:
type FheRNG struct {
state [32]byte // SHA256 state
counter uint64 // Monotonic counter
}
func (rng *FheRNG) advance() [32]byte {
data := append(rng.state[:], counter...)
rng.state = sha256.Sum256(data)
rng.counter++
return rng.state
}
Independent Claims:
- Method for generating deterministic encrypted random values in FHE operations using cryptographic hash-based state machine
- System for blockchain-compatible FHE randomness where all validators produce identical ciphertext outputs
- Computer-implemented method for seeding FHE operations from blockchain state (block hash, transaction hash)
Files: tfhe/random.go:1-181
A3. Validator Keyshare Rotation Without Downtime
Problem: Threshold FHE requires key resharing when validator set changes. Naive approach requires downtime.
Innovation: Proactive secret sharing with encrypted keyshare migration:
Epoch N validators: {V1, V2, V3} holding shares {s1, s2, s3}
Epoch N+1 validators: {V2, V3, V4}
1. V1 (leaving) encrypts share to V4 (joining) using V4's public key
2. V2, V3 participate in MPC to re-randomize shares
3. V4 decrypts their new share
4. New threshold set {V2, V3, V4} can decrypt
5. Old share s1 is information-theoretically destroyed
No downtime: decryption works throughout transition
Independent Claims:
- Method for zero-downtime threshold cryptographic keyshare rotation during validator set changes
- System for encrypted keyshare migration between leaving and joining blockchain validators
- Protocol for maintaining threshold FHE decryption capability during validator epoch transitions
Files: fhe/threshold/rotation.cpp (planned), lattice/multiparty/
Category B: Performance Optimizations (High Priority)
B1. Transaction-Batch Amortized Bootstrapping
Problem: Each FHE operation requires expensive bootstrapping (~13ms). Blockchain transactions arrive in batches but are processed independently.
Innovation: Batch bootstrap keys across transactions in a block:
Traditional:
Tx1: [op1 β bootstrap β op2 β bootstrap] Total: NΓbootstrap
Tx2: [op1 β bootstrap β op2 β bootstrap]
Tx3: [op1 β bootstrap β op2 β bootstrap]
Lux Batched:
Block: [Tx1.op1, Tx2.op1, Tx3.op1] β BATCH_BOOTSTRAP β [Tx1.op2, Tx2.op2, Tx3.op2]
Total: ceil(N/batch_size)Γbootstrap
Key Insight: EVM execution is deterministic - we can analyze the FHE operation DAG across all transactions before execution and schedule bootstraps optimally.
Independent Claims:
- Method for analyzing FHE operation dependencies across multiple blockchain transactions to identify batching opportunities
- System for cross-transaction bootstrap batching achieving GPU throughput saturation
- DAG-based scheduler minimizing total bootstrap operations per blockchain block
Files: fhe/src/binfhe/include/batch/binfhe-batch.h:1-278
B2. Lazy Carry Propagation with Deterministic Noise Tracking
Problem: Radix integer arithmetic requires carry propagation via bootstrapping. Existing implementations bootstrap after every operation.
Innovation: Track noise accumulation deterministically and defer carries:
// Traditional: bootstrap after each add
result = add(a, b); // bootstrap
result = add(result, c); // bootstrap
result = add(result, d); // bootstrap
// 3 bootstraps
// Lux Lazy Carry:
result = add_lazy(a, b); // accumulate noise
result = add_lazy(result, c); // accumulate noise
result = add_lazy(result, d); // accumulate noise
result = propagate_if_needed(result); // 1 bootstrap (if noise exceeds threshold)
// 0-1 bootstraps depending on noise budget
Key Insight: 2-bit carry buffer in limb representation allows 2-3 additions before overflow. Track noise deterministically based on operation count.
Independent Claims:
- Method for deterministic noise budget tracking for FHE radix integers using operation counting
- Lazy carry propagation system with configurable bootstrap threshold
- Computer-implemented method for deferring FHE bootstrapping based on accumulated operation history
Files: fhe/src/binfhe/include/radix/radix.h, fhe/docs/novel-optimizations.md:80-107
B3. Batch DAG Execution for FHE Operations
Problem: Individual FHE operations have high overhead. GPU utilization is low with sequential execution.
Innovation: DAG-based scheduling with async futures:
class BatchDAG {
size_t AddBootstrap(size_t input_id);
size_t AddEvalFunc(size_t input_id, const std::vector<NativeInteger>& lut);
size_t AddBinGate(BINGATE gate, size_t input1_id, size_t input2_id);
BatchResult Execute(uint32_t flags = BATCH_DEFAULT);
};
// Multi-output function evaluation for (sum, carry) pairs
BatchResult EvalFuncMultiOutputBatch(
BinFHEContext& cc,
const std::vector<LWECiphertext>& ct_in,
const std::vector<std::vector<NativeInteger>>& luts,
std::vector<LWECiphertext>& ct_out
);
Independent Claims:
- DAG-based scheduler for FHE operations enabling optimal GPU batching
- Multi-output batch function evaluation for FHE radix arithmetic (producing sum and carry simultaneously)
- Async batch processing system for FHE with future-based result retrieval
Files: fhe/src/binfhe/include/batch/binfhe-batch.h:225-275
Category C: Blockchain Infrastructure (Medium Priority)
C1. Subnet-Specific FHE Parameters
Problem: Different blockchain applications have different security/performance tradeoffs. Single parameter set is suboptimal.
Innovation: Per-subnet configurable FHE parameters:
Subnet A (High-frequency DeFi):
- Security: 128-bit
- Message bits: 4 per limb
- Bootstrap: ~8ms (faster, lower precision)
Subnet B (Confidential Voting):
- Security: 256-bit
- Message bits: 2 per limb
- Bootstrap: ~20ms (slower, higher security)
Subnet C (Privacy-Preserving ML):
- Security: 128-bit
- CKKS mode for approximate arithmetic
- No bootstrapping (leveled)
Independent Claims:
- Blockchain subnet architecture with per-subnet FHE parameter selection based on application requirements
- Cross-subnet encrypted data migration with automatic parameter conversion
- Dynamic FHE security level adjustment based on subnet policy configuration
Files: fhe/src/binfhe/include/fhevm/fhevm.h
C2. Precompile Gas Metering for FHE Operations
Problem: FHE operations have highly variable cost. Flat gas pricing leads to DoS vectors or underpriced operations.
Innovation: Dynamic gas pricing based on operation complexity:
function estimateGas(FheOp op, FheType type) returns (uint256) {
uint256 base = 10000;
uint256 bits = typeBits(type);
if (op == FheOp.ADD || op == FheOp.SUB) {
return base + bits * 500; // Linear in bits
} else if (op == FheOp.MUL) {
return base + bits * bits * 50; // Quadratic
} else if (op == FheOp.DIV) {
return base + bits * bits * bits * 5; // Cubic
}
}
Independent Claims:
- Method for computing EVM gas costs for FHE operations based on encrypted data type width
- Operation-specific gas formulae reflecting cryptographic complexity for blockchain FHE
- Dynamic gas adjustment based on current FHE coprocessor load
Files: fhe/src/binfhe/include/fhevm/fhevm.cpp
C3. Encrypted Index Private Information Retrieval
Problem: Smart contracts accessing encrypted arrays leak access patterns.
Innovation: FHE-native PIR using programmable bootstrapping:
// Traditional: access pattern leaked
encrypted_value = array[encrypted_index]; // Server sees which index
// Lux PIR:
// 1. Client encrypts index
// 2. For each position, compute: select(eq(i, encrypted_index), array[i], zero)
// 3. Sum all positions β encrypted result at encrypted index
encrypted_value = fhe_pir(array, encrypted_index);
Independent Claims:
- Method for private information retrieval using FHE select operations with no access pattern leakage
- Batched CMUX evaluation for oblivious encrypted array access
- Smart contract pattern for private array indexing without revealing access position
Files: fhe/fhevm/pir.cpp (planned)
Category D: GPU Acceleration (High Priority)
D1. Backend Abstraction for FHE GPU Acceleration
Problem: FHE operations are computationally intensive. Existing implementations are tightly coupled to specific hardware backends.
Innovation: Pluggable backend abstraction enabling MLX/CUDA/CPU backends with identical outputs:
class BinFHEBackend {
public:
virtual void BlindRotate(
RingGSWACCKey& bk,
RLWE& acc,
const std::vector<NativeInteger>& a,
const NativeInteger& mod
) = 0;
virtual void ExternalProduct(
RingGSWCiphertext& ct,
RLWE& acc,
NativeInteger scale
) = 0;
virtual LWECiphertext SampleExtract(
const RLWE& acc,
uint32_t index
) = 0;
};
class BackendCPU : public BinFHEBackend { ... };
class BackendMLX : public BinFHEBackend { ... }; // Apple Silicon
class BackendCUDA : public BinFHEBackend { ... }; // NVIDIA
Key Insight: Integer-only kernels (no floats) ensure bit-identical results across backends for blockchain consensus.
Independent Claims:
- Pluggable backend architecture for FHE operations enabling transparent CPU/GPU execution
- Integer-only GPU kernel implementations for FHE ensuring deterministic blockchain execution
- Backend abstraction layer enabling FHE hardware acceleration without algorithm modification
Files: fhe/docs/gpu-coprocessor-roadmap.md, fhe/src/binfhe/lib/backend/
D2. Packed Device Formats for Zero-Copy GPU Transfer
Problem: Transferring FHE ciphertexts and keys between CPU and GPU incurs memory copy overhead.
Innovation: Canonical binary layouts for zero-copy GPU transfer:
// Packed LWE ciphertext - ready for GPU memory mapping
struct PackedLWECt {
uint32_t version;
uint32_t n; // LWE dimension
uint32_t log_q; // Modulus bits
int64_t* data; // [a_0, ..., a_{n-1}, b] contiguous
};
// Packed bootstrapping key - row-major for coalesced GPU access
struct PackedBTKey {
uint32_t version;
uint32_t n; // Input LWE dimension
uint32_t N; // Ring dimension
uint32_t k; // RLWE dimension
uint32_t base_g; // Gadget base
uint32_t num_levels; // Decomposition levels
int64_t* data; // RGSW samples packed row-major
};
Independent Claims:
- Binary format for FHE ciphertexts enabling zero-copy GPU memory mapping
- Row-major packed representation for bootstrapping keys optimized for GPU coalesced access
- Versioned serialization format for FHE cryptographic material with hardware-agnostic layout
Files: fhe/docs/gpu-coprocessor-roadmap.md:69-99
D3. Multi-GPU FHE Kernel Coordination
Problem: Single GPU throughput is insufficient for high-volume FHE operations. Multi-GPU coordination has synchronization overhead.
Innovation: Deterministic integer GPU kernels with batch-level parallelism:
// Gadget decomposition kernel - distributable across GPUs
__global__ void gadget_decompose(
const int64_t* input, // [batch, n]
int64_t* output, // [batch, n, levels]
uint32_t n,
uint32_t base_g,
uint32_t num_levels
);
// External product kernel (NTT-domain) - GPU-local NTT
__global__ void external_product_ntt(
const int64_t* acc, // [batch, N]
const int64_t* bk, // [n, k, levels, N]
const int64_t* decomp, // [batch, n, levels]
int64_t* result, // [batch, N]
uint32_t N, uint32_t n, uint32_t k, uint32_t levels
);
// Blind rotation - batch-parallelizable across GPUs
__global__ void blind_rotate(
const int64_t* acc_in,
const int64_t* bk,
const int32_t* lwe_a, // [batch, n]
int64_t* acc_out,
uint32_t batch, uint32_t n, uint32_t N
);
Key Insight: Partition bootstrapping batch across GPUs, each GPU holds full bootstrapping key copy, combine results via simple reduction.
Independent Claims:
- Multi-GPU coordination for FHE blind rotation with batch partitioning
- Deterministic integer kernel design ensuring identical results across GPU architectures
- Distributed NTT strategy for FHE external product across multiple GPUs
Files: fhe/docs/gpu-coprocessor-roadmap.md:141-176, fhe/src/core/include/math/hal/mlx/, fhe/src/core/include/math/hal/cuda/
Category F: Pure Go Innovation (Medium Priority)
F1. Pure Go TFHE Without CGO
Problem: C/C++ FHE libraries require CGO for Go integration, limiting cloud deployment and increasing complexity.
Innovation: Complete TFHE implementation in pure Go:
// Pure Go blind rotation without CGO
func (eval *Evaluator) bootstrap(ct *Ciphertext, testPoly *ring.Poly) (*Ciphertext, error) {
testPolyMap := map[int]*ring.Poly{0: testPoly}
results, err := eval.eval.Evaluate(ct.Ciphertext, testPolyMap, eval.bsk.BRK)
// ... pure Go implementation
}
Benefits:
- No C compiler required for deployment
- Cross-platform binary compilation
- Easier cloud/serverless deployment
- Memory safety guarantees
Independent Claims:
- Pure Go implementation of TFHE programmable bootstrapping without foreign function interfaces
- Method for deploying FHE operations in cloud environments without native code dependencies
- Cross-platform FHE execution system using managed runtime languages
Files: tfhe/*.go, lattice/schemes/tfhe/*.go
Category E: Threshold Protocol Innovations (Medium Priority)
E1. Efficient t-out-of-N Threshold RLWE Extension
Innovation: Extension of N-out-of-N threshold to t-out-of-N using Lagrange interpolation at the polynomial level:
// Combiner converts t-out-of-N Shamir shares to t-out-of-t additive shares
func (cmb Combiner) GenAdditiveShare(activesPoints []ShamirPublicPoint,
ownPoint ShamirPublicPoint, ownShare ShamirSecretShare, skOut *rlwe.SecretKey) error {
// Compute Lagrange coefficient for this party
prod := cmb.one
for _, active := range activesPoints[:cmb.threshold] {
if active != ownPoint {
cmb.ringQP.MulRNSScalar(prod, cmb.lagrangeCoeffs[active], prod)
}
}
// Multiply share by Lagrange coefficient
cmb.ringQP.MulRNSScalarMontgomery(ownShare.Poly, prod, skOut.Value)
return nil
}
Key Insight: Evaluate Lagrange coefficient multiplication on shares BEFORE function evaluation to avoid noise amplification.
Note: This builds on Mouchet et al. 2022 paper. Patent claims should focus on blockchain-specific applications.
Files: lattice/multiparty/threshold.go:1-225, lattice/multiparty/README.md
Part III: Prosecution Strategy
Priority Ranking
| Innovation | Priority | Estimated Value | Risk if Not Filed |
|---|---|---|---|
| A1. Consensus-Integrated Threshold FHE | π΄ Critical | High | Competitors could claim |
| A2. Deterministic FHE RNG | π΄ Critical | High | Essential for blockchain FHE |
| B1. Transaction-Batch Bootstrapping | π΄ Critical | High | Performance differentiator |
| D1. Backend Abstraction GPU | π΄ Critical | High | GPU vendors could claim |
| D2. Packed Device Formats | π‘ High | High | Performance critical |
| D3. Multi-GPU Coordination | π‘ High | High | Scaling differentiator |
| B2. Lazy Carry Propagation | π‘ High | Medium | May overlap with prior art |
| B3. Batch DAG Execution | π‘ High | Medium | GPU optimization essential |
| C2. Gas Metering | π‘ High | Medium | fhEVM differentiator |
| A3. Keyshare Rotation | π’ Medium | Medium | Operational feature |
| C1. Subnet Parameters | π’ Medium | Low | Configuration feature |
| C3. Encrypted PIR | π’ Medium | Medium | Privacy feature |
| E1. Pure Go TFHE | π’ Medium | Low | Implementation choice |
Recommended Filing Order
Phase 1 (Q1 2025) - Core Blockchain-FHE:
- A1: Consensus-Integrated Threshold FHE
- A2: Deterministic FHE RNG
- B1: Transaction-Batch Bootstrapping
- D1: Backend Abstraction for GPU Acceleration
Phase 2 (Q2 2025) - GPU & Performance: 5. D2: Packed Device Formats 6. D3: Multi-GPU Coordination 7. B2: Lazy Carry Propagation 8. B3: Batch DAG Execution
Phase 3 (Q3 2025) - Infrastructure: 9. C2: Gas Metering 10. A3: Keyshare Rotation 11. C3: Encrypted PIR 12. C1: Subnet Parameters 13. F1: Pure Go TFHE
Filing Jurisdictions
| Jurisdiction | Reason | Priority |
|---|---|---|
| USPTO (US) | Primary market, strong enforcement | Required |
| EPO (Europe) | Strong crypto industry | Required |
| WIPO (PCT) | International coverage | Required |
| Singapore | Crypto hub | Optional |
| Japan | Tech patents respected | Optional |
Part IV: Defensive Considerations
Potential Prior Art Searches Required
Before filing, conduct comprehensive prior art searches for:
- TFHE paper (Chillotti et al.) - ensure our claims don't overlap
- FHEW paper (Ducas-Micciancio) - binary gate bootstrapping
- Lattigo library (EPFL) - open source implementations
- HElib (IBM) - historical FHE work
- SEAL (Microsoft) - Microsoft's FHE library
- All Zama patents (EP4195578, WO2023067928, EP4488821)
- Intel/AMD FHE acceleration patents
- Inpher patents (threshold FHE)
Defensive Publications
Consider defensive publications for innovations we don't patent:
- Pure Go implementation details (prevent others from patenting)
- Specific test polynomial formulations
- Integration patterns with existing frameworks
Cross-License Considerations
Potential cross-licensing partners:
- EPFL (Lattigo authors)
- Microsoft (SEAL)
- OpenFHE consortium
- Duality Technologies
Part V: Implementation Status
| Innovation | Code Status | Documentation | Patent Draft |
|---|---|---|---|
| A1. Consensus-Integrated | Planned | β Complete | Not started |
| A2. Deterministic RNG | β Complete | β Complete | Not started |
| A3. Keyshare Rotation | Planned | β Complete | Not started |
| B1. Batch Bootstrapping | β Complete | β Complete | Not started |
| B2. Lazy Carry | β Complete | β Complete | Not started |
| B3. Batch DAG | β Complete | β Complete | Not started |
| C1. Subnet Parameters | Partial | β Complete | Not started |
| C2. Gas Metering | Partial | β Complete | Not started |
| C3. Encrypted PIR | Planned | β Complete | Not started |
| D1. Backend Abstraction GPU | β Complete | β Complete | Not started |
| D2. Packed Device Formats | β Complete | β Complete | Not started |
| D3. Multi-GPU Coordination | Partial | β Complete | Not started |
| F1. Pure Go TFHE | β Complete | β Complete | Not started |
References
- Chillotti et al., "TFHE: Fast Fully Homomorphic Encryption over the Torus", ASIACRYPT 2017
- Ducas-Micciancio, "FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second", EUROCRYPT 2015
- Mouchet et al., "Multiparty Homomorphic Encryption from Ring-Learning-With-Errors", ePrint 2020/304
- Mouchet et al., "An Efficient Threshold Access-Structure for RLWE-Based Multiparty Homomorphic Encryption", ePrint 2022/780
- Regev, "On Lattices, Learning with Errors, Random Linear Codes, and Cryptography", STOC 2005
- Brakerski-Vaikuntanathan, "Efficient Fully Homomorphic Encryption from (Standard) LWE", FOCS 2011
Change Log
| Date | Author | Changes |
|---|---|---|
| 2025-12-27 | AI | Initial draft with 10 innovations identified |
| 2025-12-27 | AI | Added GPU acceleration category (D1-D3): Backend abstraction, packed formats, multi-GPU coordination |
This document is prepared for Lux Industries Inc patent review. Not legal advice. All claims require review by patent counsel.