LLM Gateway Integration with Hanzo AI
Specifies Lux ↔ Hanzo LLM Gateway integration enabling AI access for contracts, validators, and apps.
LP-106: LLM Gateway Integration with Hanzo AI
Abstract
This proposal establishes integration standards between Lux Network and Hanzo's LLM Gateway (HIP-4), enabling Lux validators and applications to access 100+ LLM providers through a unified interface. This integration provides AI capabilities to smart contracts, enables on-chain inference verification, and supports AI-powered blockchain analytics.
Motivation
Lux Network requires AI capabilities for:
- Smart Contract Intelligence: AI-powered contract analysis and optimization
- Validator Assistance: Automated threat detection and network optimization
- Cross-Chain Analytics: AI-driven insights across Lux's multi-chain architecture
- Developer Tools: AI code generation and auditing for Lux dApps
- User Experience: Natural language interfaces for blockchain interactions
Hanzo's LLM Gateway provides these capabilities through a battle-tested, provider-agnostic interface.
Specification
Integration Architecture
Lux Network Layer
├── Smart Contracts
│ └── AI Oracle Contracts → Hanzo LLM Gateway
├── Validator Nodes
│ └── AI Monitoring Module → Hanzo LLM Gateway
├── Developer Tools
│ └── AI Assistant SDK → Hanzo LLM Gateway
└── Applications
└── AI Service Layer → Hanzo LLM Gateway
Hanzo LLM Gateway (HIP-4)
├── Provider Router (100+ providers)
├── Model Selection Engine
├── Caching Layer
└── Cost Optimization
Smart Contract AI Oracle
interface ILuxAIOracle {
struct AIRequest {
string prompt;
string model;
uint256 maxTokens;
uint256 temperature;
address callback;
bytes32 requestId;
}
struct AIResponse {
bytes32 requestId;
string response;
uint256 tokensUsed;
uint256 cost;
bytes signature; // Proof of inference
}
// Request AI inference
function requestInference(
AIRequest calldata request
) external payable returns (bytes32 requestId);
// Callback for AI response
function fulfillInference(
AIResponse calldata response
) external;
// Verify inference proof
function verifyInference(
bytes32 requestId,
bytes calldata proof
) external view returns (bool);
}
Validator AI Integration
package validator
import (
"github.com/luxfi/lux-node/snow/engine"
"github.com/hanzoai/llm-gateway/client"
)
type AIValidator struct {
engine engine.Engine
llmClient *client.LLMGateway
}
// Analyze transaction patterns
func (v *AIValidator) AnalyzeTransaction(tx *Tx) (*AIAnalysis, error) {
prompt := fmt.Sprintf(`
Analyze this transaction for anomalies:
From: %s
To: %s
Value: %s
Data: %s
Check for:
1. Known attack patterns
2. Unusual gas usage
3. Suspicious contract calls
4. Money laundering indicators
`, tx.From, tx.To, tx.Value, tx.Data)
response, err := v.llmClient.Complete(&CompletionRequest{
Model: "claude-3-opus",
Prompt: prompt,
MaxTokens: 500,
})
return parseAIAnalysis(response), err
}
// Optimize validator performance
func (v *AIValidator) OptimizePerformance() error {
metrics := v.engine.GetMetrics()
prompt := fmt.Sprintf(`
Analyze validator metrics and suggest optimizations:
- Block production rate: %f
- Network latency: %dms
- Memory usage: %dMB
- Peer count: %d
`, metrics.BlockRate, metrics.Latency, metrics.Memory, metrics.Peers)
response, err := v.llmClient.Complete(&CompletionRequest{
Model: "gpt-4-turbo",
Prompt: prompt,
})
return v.applyOptimizations(response)
}
Developer SDK Integration
import { LuxSDK } from '@luxfi/sdk';
import { HanzoLLMGateway } from '@hanzoai/llm-gateway';
class LuxAISDK extends LuxSDK {
private llm: HanzoLLMGateway;
constructor(config: LuxConfig) {
super(config);
this.llm = new HanzoLLMGateway({
apiKey: config.hanzoApiKey,
endpoint: config.llmGatewayUrl || 'https://api.hanzo.ai/v1'
});
}
// Generate smart contract code
async generateContract(spec: ContractSpec): Promise<string> {
const response = await this.llm.complete({
model: 'claude-3-opus',
messages: [{
role: 'system',
content: 'You are a Solidity expert. Generate secure, gas-optimized contracts.'
}, {
role: 'user',
content: `Generate a smart contract with:
Name: ${spec.name}
Type: ${spec.type}
Features: ${spec.features.join(', ')}
Security: ${spec.securityLevel}
`
}],
maxTokens: 2000
});
// Validate generated code
await this.auditContract(response.content);
return response.content;
}
// AI-powered contract audit
async auditContract(code: string): Promise<AuditReport> {
const response = await this.llm.complete({
model: 'gpt-4-turbo',
messages: [{
role: 'system',
content: 'You are a smart contract security auditor.'
}, {
role: 'user',
content: `Audit this contract for vulnerabilities:\n\n${code}`
}],
maxTokens: 1500
});
return parseAuditReport(response.content);
}
// Natural language to transaction
async nlToTransaction(request: string): Promise<Transaction> {
const response = await this.llm.complete({
model: 'claude-3-haiku',
messages: [{
role: 'user',
content: `Convert to transaction: "${request}"`
}],
responseFormat: {
type: 'json_object',
schema: TransactionSchema
}
});
return JSON.parse(response.content);
}
}
Cross-Chain AI Analytics
interface CrossChainAnalytics {
// Analyze bridge transactions
analyzeBridgeFlow(params: {
sourceChain: string;
targetChain: string;
timeRange: TimeRange;
}): Promise<BridgeAnalysis>;
// Detect cross-chain arbitrage
detectArbitrage(params: {
tokens: string[];
chains: string[];
minProfit: BigNumber;
}): Promise<ArbitrageOpportunity[]>;
// Risk assessment for cross-chain operations
assessCrossChainRisk(params: {
operation: CrossChainOp;
value: BigNumber;
}): Promise<RiskScore>;
}
class LuxCrossChainAI implements CrossChainAnalytics {
async analyzeBridgeFlow(params): Promise<BridgeAnalysis> {
const data = await this.collectBridgeData(params);
const analysis = await this.llm.complete({
model: 'claude-3-opus',
messages: [{
role: 'system',
content: 'Analyze cross-chain bridge patterns for insights.'
}, {
role: 'user',
content: `Analyze bridge flow:\n${JSON.stringify(data, null, 2)}`
}]
});
return {
volume: analysis.volume,
trends: analysis.trends,
anomalies: analysis.anomalies,
recommendations: analysis.recommendations
};
}
}
Configuration Management
# lux-node-config.yaml
ai:
enabled: true
provider: hanzo
gateway:
url: https://api.hanzo.ai/v1
api_key: ${HANZO_API_KEY}
timeout: 30s
retry_attempts: 3
models:
default: claude-3-haiku
analysis: claude-3-opus
code_generation: gpt-4-turbo
audit: claude-3-opus
features:
transaction_analysis: true
performance_optimization: true
contract_generation: true
natural_language: true
cross_chain_analytics: true
limits:
max_requests_per_minute: 100
max_tokens_per_request: 4000
monthly_budget: 1000 # USD
Performance Optimization
// Caching layer for AI responses
type AICache struct {
redis *redis.Client
ttl time.Duration
}
func (c *AICache) Get(prompt string) (*AIResponse, bool) {
key := hashPrompt(prompt)
data, err := c.redis.Get(context.Background(), key).Bytes()
if err != nil {
return nil, false
}
var response AIResponse
json.Unmarshal(data, &response)
return &response, true
}
func (c *AICache) Set(prompt string, response *AIResponse) {
key := hashPrompt(prompt)
data, _ := json.Marshal(response)
c.redis.Set(context.Background(), key, data, c.ttl)
}
// Batch processing for efficiency
type AIBatcher struct {
gateway *LLMGateway
requests chan *AIRequest
batch []*AIRequest
ticker *time.Ticker
}
func (b *AIBatcher) ProcessBatch() {
responses, err := b.gateway.CompleteBatch(b.batch)
if err == nil {
for i, resp := range responses {
b.batch[i].callback(resp)
}
}
b.batch = nil
}
Security Considerations
contract SecureAIOracle {
// Proof of inference verification
mapping(bytes32 => InferenceProof) public proofs;
struct InferenceProof {
bytes32 modelHash;
bytes32 inputHash;
bytes32 outputHash;
uint256 timestamp;
bytes signature;
}
function verifyInferenceProof(
bytes32 requestId,
bytes calldata proof
) public view returns (bool) {
InferenceProof memory p = proofs[requestId];
// Verify signature from trusted AI provider
address signer = recoverSigner(p, proof);
require(trustedProviders[signer], "Untrusted provider");
// Verify proof freshness
require(block.timestamp - p.timestamp < 3600, "Stale proof");
// Verify proof integrity
bytes32 proofHash = keccak256(abi.encode(
p.modelHash,
p.inputHash,
p.outputHash,
p.timestamp
));
return verifySignature(proofHash, proof);
}
}
Rationale
Why Hanzo LLM Gateway?
- Provider Agnostic: Access to 100+ LLM providers
- Cost Optimization: Automatic routing to cheapest provider
- High Availability: Fallback across multiple providers
- Unified Interface: Single API for all models
- Battle Tested: Already serving millions of requests
Why On-Chain AI Integration?
- Smart Contract Intelligence: Enable AI-powered DeFi strategies
- Automated Security: Real-time threat detection
- User Accessibility: Natural language blockchain interaction
- Developer Productivity: AI-assisted development
Implementation Timeline
Phase 1: Core Integration (Q1 2025)
- Basic LLM Gateway connection
- Simple AI oracle contract
- Developer SDK integration
Phase 2: Validator AI (Q2 2025)
- Transaction analysis
- Performance optimization
- Network monitoring
Phase 3: Advanced Features (Q3 2025)
- Cross-chain analytics
- Contract generation
- Natural language interfaces
Phase 4: Full Production (Q4 2025)
- Mainnet deployment
- Performance optimization
- Enterprise features
Backwards Compatibility
This LP is additive and opt‑in. Nodes, contracts, and apps continue to function without the AI components enabled. Configuration gates all new behavior (ai.enabled); APIs are introduced alongside existing ones, avoiding breaking changes.
Testing
Integration Tests
# Test Hanzo gateway connection
go test ./ai/gateway -v
# Test AI oracle contract
forge test --match-contract AIOracle
# Test SDK integration
npm run test:ai-sdk
Performance Benchmarks
- Latency: < 500ms for simple queries
- Throughput: > 1000 requests/minute
- Cache hit rate: > 80%
- Cost optimization: 30% savings vs direct provider
Security Audit
- AI response verification mechanisms
- Rate limiting and DDoS protection
- API key management
- Proof of inference validation
Security Considerations
- Verify provenance: accept responses only from trusted providers with signed proofs; enforce freshness windows.
- Rate limit and cache to mitigate abuse; isolate AI subsystems from consensus‑critical paths.
- Treat AI output as untrusted input; validate before on‑chain effects.
- Secure API keys and transport (TLS); rotate keys and monitor usage.
References
- HIP-4: LLM Gateway Standard
- LP-10: P-Chain Platform Chain Specification
- LP-103: MPC-LSS Multi-Party Computation
- Hanzo LLM Gateway Docs
Test Cases
Unit Tests
-
Attestation Validation
- Test attestation format
- Verify signature chains
- Test timestamp validation
-
AI Model Integration
- Test model loading
- Verify inference accuracy
- Test resource limits
-
Privacy Preservation
- Test data isolation
- Verify access controls
- Test audit logging
Integration Tests
-
Attestation Flow
- Test end-to-end attestation
- Verify chain of custody
- Test revocation handling
-
Compute Verification
- Test proof generation
- Verify computation integrity
- Test dispute resolution
Copyright
Copyright and related rights waived via CC0.